Organic Chemistry

Basic Structures naming

Functional groups multiple bonds alcohols carboxylic acids

Jul 17-10:55 AM

Jul 17-10:55 AM

Molecular and Structural formulas

carbons have 4 bonds

Name	molecular formula	structural formula	carbon backbone structure (no H drawn in)	stick structure
methane				
ethane				
pentane				
octane				

Naming:

- 1. If all single bonds, ends in "-ane"
- 2. Number of C -- given by a prefix
 - 1 meth- methane
 - 2 eth- ethane
 - 3 prop-
 - 4 but- butane
 - 5 pent- pentane

nonane

- 6 hex-
- 7 hept-
- 8 oct-
- 9 non-
- 10 dec-

- 1 C Monkeys
- 2 C <u>E</u>at
- 3 C Peeled
- 4 C Bananas

f

Carbon: covalent bonds electrons are shared

single bond = 1 line = 2 e-

double bond = 2 lines = 4 e-

$$C=C$$

triple bond = 3 lines = 6 e-

$$H-C \equiv C-H$$

$$H-C = C-H$$
 H:C:::C:H

Straight chains are easy

- now let's add branches!
- 1. Find longest chain of C's and give alkane name
- 2. Find branch group and give name

1C - methyl

2C - ethyl 3C - propyl

- 3. List the groups alphabetically in front of the longest alkane
- 4. Number the C's of the longest chain
- 5. use C number for location of each branch

(use lowest numbers)

2-methyl hexane

I СН₂ I СН₃

$$\begin{array}{c} \operatorname{CH_3-CH_2-CH---CH_2-CH_3} \\ | \\ \operatorname{CH_2} \\ | \\ \operatorname{CH_3} \end{array}$$

$$\begin{array}{cccc} & \text{CH}_3 & \text{CH}_3 \\ & \text{I} & \text{I} \\ \text{CH}_3 & \text{CH}_2 & \text{CH}_2 \\ \text{I} & \text{I} & \text{I} \\ \text{CH}_2-\text{CH}_2-\text{CH}-\text{CH}_2 \end{array}$$

$$\begin{array}{c} & \text{CH}_{3} \\ \text{CH}_{3} \text{CH}_{2} - \text{CH} - \text{C} - \text{CH}_{3} \\ \text{I} & \text{I} \\ \text{CH}_{3} & \text{CH}_{3} \end{array}$$

Jul 17-10:55 AM

Naming and structures of alcohols

an alcohol is a hydrocarbon with an -OH (hydroxyl group)

- 1. Name the alkane, drop the "e" and add -ol
- 2. Use a number in front of the name to give location of hydroxyl group (-OH) (number from both ends, use smallest number) Name these:

give structural formula for methanol

3-octanol

4-decanol

Carboxylic Acids

p.12, 1-4, 6-8

watch.webloc